Name		Date	Class	
Name		Date	 Ciuss	

WORKSHEET

32 MATH IN SCIENC

INTEGRATED SCIENCE

MATH SKILLS USED
Multiplication

Multiplication Division Decimals

Density

Calculate density, and identify substances using a density chart.

Density is a measure of the amount of mass in a certain volume. This physical property is often used to identify and classify substances. It is usually expressed in grams per cubic centimeters, or g/cm³. The chart on the right lists the densities of some common materials.

density =
$$\frac{\text{mass}}{\text{volume}}$$

$$D=\frac{m}{V}$$

SAMPLE PROBLEM: What is the density of a billiard ball that has a volume of 100 cm³ and a mass of 250 g?

$$D = \frac{250 \text{ g}}{100 \text{ cm}^3}$$

$$D = 2.5 \text{ g/cm}^3$$

Densities of Substances

Substance	Density (g/cm³)
Gold	19.3
Mercury	13.5
Lead	11.4
iron	7.87
Aluminum	2.7
Bone	1.7–2.0
Gasoline	0.66-0.69
Air (dry)	0.00119

Your Turn!

- 1. A loaf of bread has a volume of 2270 cm³ and a mass of 454 g. What is the density of the bread?
- **2.** A liter of water has a mass of 1000 g. What is the density of water? (Hint: $1 \text{ mL} = 1 \text{ cm}^3$)
- **3.** A block of wood has a density of 0.6 g/cm³ and a volume of 1.2 cm³. What is the mass of the block of wood? Be careful!
- **4.** Use the data below to calculate the density of each unknown substance. Then use the density chart above to determine the identity of each substance.

Mass (g) Example: 4725		Volume (cm ³)	Density (g/cm ³)	Substance	
		350	$4725 \div 350 = 13.5$	mercury	
a.	171	15			
b.	108	40			
c.	475	250			
d.	680	1000			

BUOYANT FORCE

NAME_	
DATE_	
PER_	PAGE

Read pages 168-172 of the handout on Buoyant Force. Then complete the following questions in complete sentences where appropriate:

- 1. Define buoyant force:
- 2. _____ principle states that the buoyant force on an object in a fluid is an _____ force equal to the _____ of the volume of fluid that the object _____.
- 3. Buoyant force opposes ______.
- 4. When would an object in a fluid sink?
- 5. When would an object in a fluid float?
- 6. Why do so few substances float in air?
- 7. Give an example of a substance that floats in air:_____
- 8. How does a steel ship float?
- 9. How can a submarine travel both under water and at the surface of the water?
- 10. How does a bony fish's swim bladder work to allow it to remain at a certain water depth?

PAC	ЭE	

ANALYSIS:

- 1. How does the buoyant force compare with the weight of the displaced water?
- 2. Why does the volume of water always equal it's mass?
- 3. How did the buoyant force change between 14 washers and 20 washers? Why?
- 4. What would happen if you were to add even more washers to the container? Explain your answer in terms of the buoyant force.

- 5. What would happen if you put the washers into the water without the container?
- 6. What difference does the container's shape make? In other words, why do the washers float when you put them into the container?