ATOMS	Name	
	Date	
	Per Page	
RESEARCH: (You will be getting you Textbook)	r notes from pages 125 – 130 in the Physical Science	

atom: _____

nucleus: _____

ATOMIC PARTICLES:

Name	Charge	Location?
electron		
proton		
neutron		

atomic number: _____

atomic mass: _____

(think of atomic mass as the "weight" of an atom)

The atomic number gives the number of protons. It also gives the number of electrons. How do you arrive at the number of neutrons?

Number of neutrons = ______ - _____

Electron energy levels:

PRACTICE:

- 1. Since carbon has 6 protons in its nucleus, it will have ______ electrons in its energy levels.
- 2. If neon has 10 total electrons, there are ______ electrons in the outermost energy level.
- 3. If sodium has 11 total electrons, there are ______ electrons in the outermost energy level.
- 4. Copper (Cu) : Atomic number = ______
 Atomic mass = ______
 How many protons in the nucleus? ______
 How many total electrons? ______
 How many neutrons in the nucleus? ______
 How many total energy levels? ______
 How many electrons in each energy level? _______

ACTIVITY:

"The Model of Atoms" page is divided into 4 sections. You will be drawing models of atoms for 4 elements: carbon, oxygen, neon, and sodium.

	# P & # E	# P + # N	
ELEMENT	ATOMIC #	ATOMIC MASS	NUMBER of NEUTRONS
Carbon	6	12	
Oxygen	8	16	
Neon	10	20	
Sodium	11	23	

- Draw a circle (at least the size of a quarter) to represent the nucleus for each of the 4 atoms. Make solid <u>black</u> circles to represent <u>protons</u>. Put the correct number in each nucleus.
- 2. Draw solid <u>red</u> circles to represent <u>neutrons</u>. Put the correct number in each nucleus. You need to use the table above to figure out the correct number of neutrons.
- Draw the appropriate number of energy levels for electrons around each nucleus. Fill in green open circles (not solid) to represent <u>electrons</u> in each energy level. Remember the maximum number of electrons that can be in each energy level.

CONCLUSIONS:

- 1. What particles are found in the nucleus of an atom?
- 2. What particle has a positive charge? _____
- 3. What particle has a negative charge?
- 4. What particle has no charge (is neutral)? _____
- 5. Do you think the electrons of an atom really travel in definite circular orbits as represented in your models? _____ What do you think they do? _____
- 6. How are the number of protons, the number of electrons, and the atomic number related?

How do you find the number of neutrons in the nucleus of an atom?