COUNTING ATOMS AND DETERMINING

 WHETHER EQUATIONS ARE BALANCED OR UNBALANCED
OBJECTIVE

- To be able to explain that in a chemical reaction, no atoms are created or destroyed.
- Atom/Element- Substance that cannot be broken down; 92 occur naturally.
- Molecule/Compound- Two or more atoms of DIFFERENT elements chemically bonded.
\bigcirc Subscript - A number that appears after an element to show how many of atoms are present in a molecule.
- Coefficient - a number placed in front of a chemical symbol or formula to show how many of that molecule need to be in the chemical reaction to make it balanced.
- Ex- $2 \mathrm{H}_{2} \mathrm{O}_{2}->2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

ACTIVITY

- The following atoms are represented by the following colors: pink = oxygen (O), purple = carbon (C) white $=$ hydrogen (H), yellow = sodium (Na), orange $=$ calcium (Ca), and green $=$ chlorine (Cl)
- Please share the atoms with your table. You may not need all of the different types of atoms.
- Pull out the atoms you need for the reactant side, and create a model for each reactant molecule (left side of equation). Count out the amount of atoms you have in your reactant side of the equation.
- Pull out the atoms you need for the product side, and create a model for each product molecule (right side of equation). Count out the amount of atoms you have in your product side of the equation.
- Determine whether your equation is balanced or not. If it is balanced, you should have the same number of atoms for each atom type.
- Answer the questions in complete sentences and define the words not mentioned in the beginning of the lesson.

COLORS OF THE ATOMS

Atom
 Color

Oxygen
Pink
Carbon
Purple
Hydrogen
White
Sodium
Yellow
Calcium
Orange
Chlorine
Green

