Name	Date	Class
------	------	-------

Chemical Reactions • 6.2 Review and Reinforce

Describing Chemical Reactions

Page___

Understanding Main Ideas

Balance the equations on the lines below. State whether the reaction is a synthesis, decomposition, or replacement reaction.

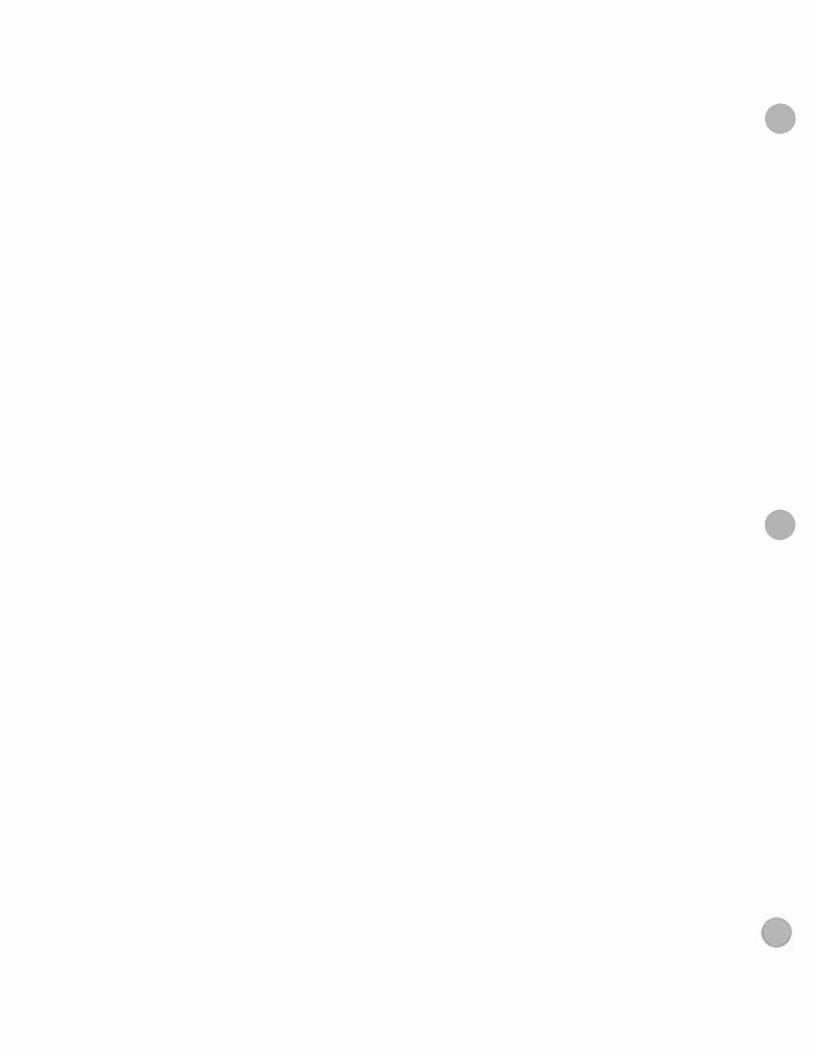
Given Equation	Balanced Equation	Type of Reaction
1. FeS + HCl \rightarrow FeCl ₂ + H ₂ S	a.	b.
2. Na + F ₂ → NaF	a.	b.
3. HgO \rightarrow Hg + O ₂	a.	b.

Answer questions 4 and 5 on the back of this paper

- 4. Describe in words the reaction represented by the equation: $2 H_2 + O_2 \rightarrow 2 H_2O$. Include a description of the composition of each kind of molecule.
- 5. Use the principle of conservation of matter to explain why the equation in question 4 is balanced.

Building Vocabulary

Match each term with its definition by writing the letter of the correct definition on the line beside the term in the left column.


- 6. chemical equation7. decomposition8. coefficient

9. product

10. reactant

- _____ 11. conservation of matter
- ____ 12. synthesis
- ____ 13. replacement

- a. substance present after a reaction
- **b.** reaction in which substances combine to form a more complex compound
- c. uses symbols and formulas to show chemical reactions
- d. reaction in which one element replaces another in a compound
- e. substance present before a reaction
- f. number telling how many molecules of a substance are involved in a chemical reaction
- g. reaction in which compounds are broken down into simpler products
- h. principle that states that matter is not created or destroyed during a chemical reaction

