FINDING SPEED	NAMEPAGE
OBJECTIVE:	_
RESEARCH:	
Distance:	
Time:	
Speed:	
Calculating Speed:	

ACTIVITY:

1. Arrange the ramp as shown in the figure below:

- 2. You will measure the motion of the marble when it is traveling on the **LEVEL** surface.
- 3. Place the meterstick so that the 0 cm end is parallel to the bottom of the ramp.
- 4. Choose a point on the ramp. You should release the marble from the same point on the ramp each time.
- 5. Start with a ramp height of one book.
- 6. Release the marble. When the marble reaches the table, start your stopwatch. When the marble reaches the 75 cm mark, stop your stopwatch. Record your observations in Table 1.
- 7. Repeat using 2, 3, and 4 books.
- 8. Calculate the speed of the marble after each ramp height.

TABLE 1. DATA

	SPEED	TIME (sec) =	 DISTANCE	# OF BOOKS (ramp height)
cm/sec		\$	75 cm	1
cm/sec		s	75 cm	2
cm/sec		\$	75 cm	3
cm/sec		s	75 cm	4

CONCLUSIONS:

1. To calculate speed, a student must measure the	_
an object in motion moves and the	it takes for the
object to cover that distance.	

- 2. How does the speed of the marble change when the height of the ramp increases?
- 3. Do you think you would find the same average speed if the distance measurement was only 25 cm instead of 75 cm? Why or why not? (Disregard friction in your answer)