						E		x	K	b	lc)	Ŋ	ë	l	e	2	3	rı	n	iı	n	g	J
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

NI	2	m	٦.	٠.
1 1	α		10	· ·

Gravitational Force Continued

Activity B:	Get the Gizmo ready:		
Gravity and distance	 Turn on Show distance. Set m_A and m_B to 10.0 × 10⁵ kg. 	A -5	B

Question: How does distance affect the strength of gravitational force?

1. Form hypothesis: How do you think the distance between objects A and B will affect the

strength of the gravitational force between them? _____

2. Predict: How do you think the gravitational force between two objects will change if the

distance between the objects is doubled?

- 3. Measure: Place object A on the x axis at -5 and object B on the x axis at 5.
 - A. What is the distance between the two objects?
 - B. What is the magnitude of the force on object A? |F_A| = _____
- 4. Gather data: For each set of locations listed below, record the distance and the force on object A. Leave the last column (Force Factor) blank for now.

Object A	Object B	Distance (m)	F _A (N)	Force factor
(-5, 0)	(5, 0)			
(-10, 0)	(10, 0)			
(-15, 0)	(15, 0)			
(-20, 0)	(20, 0)			

5. <u>Interpret</u>: How does increasing the distance affect the force? _____

6. <u>Calculate</u>: To calculate the force factor, divide each force by the original force (0.667 N). Write each force factor with three significant digits.

Activity B (continued from previous page)

7. <u>Apply</u>: What would you expect the force to be if the distance was 50 meters? _____

Use the Gizmo to check your answer.

8. <u>Make a rule</u>: What happens to the force between objects as the distance between them increases?

9. Summarize:

1. Name the two factors that affect the force of gravity:

Factor A: _____ Factor B: _____

2. Explain how the magnitude of gravitational force changes when Factor A increases:

3. Explain how the magnitude of gravitational force changes when Factor A decreases:

4. Explain how the magnitude of gravitational force changes when Factor B increases:

5. Explain how the magnitude of gravitational force changes when Factor B decreases:

