MEASURING FORCES
 Main Idea: Elastic materials can
 be used to measure
 force

Elastic Materials

 -To measure a force, an elastic material can be used when pulling or pushing an object, and measure how far it STRETCHES
Elastic Materials

- The Tools To Use: P. 210, a thru e
- List the effect of the force in each picture. Then tell how you would use the effect to measure force amount.
a) Effect: The weight moves down.

To Measure Force: how far RB stretches.
b) Effect: The plunger is pushed down.

To Measure Force: how far the plunger goes.
c) Effect: The ruler is pulled down.

To Measure Force: how far the ruler bends.
d) Effect: The blade is pulled.

To Measure Force: how far the blade bends.
e) Effect: The spring stretches.

To Measure Force: how far the spring stretches

UNIT OF FORCE

 Newton (\mathbf{N}): named for Sir Isaac Newton. One Newton is equal to the amount of force needed to move 100 grams of mass.
MAKING A FORCE METER

Materials: cup hook,

 cardboard tube, wooden dowel, paper clips, rubber bands, masking tape, pen. 1. Place a piece of tape on the wood. Remove at the end of the period.
MAKING A FORCE METER

2. Calibrate the force meter: a) attach the spring scale to the force meter. b) hold the spring scale still while pulling the cardboard tube until the spring scale reads 1 N (Newton).

MAKING A FORCE METER

c) Draw a line at the end of the cardboard tube (this is the 1 N line).
d) Pull slightly harder until the spring scale reads 2 N . Draw the line.
e) Repeat until you reach 15 N .

USING THE FORCE METER

Measure the force needed to lift the following objects:

500 gram mass:

2 pound weight: N
book with string:

QUESTIONS

1. What is a Newton?
2. How many Newtons of force does is take to lift: 100 grams, 200 grams, 400 grams, 450 grams, 750 grams.
