Name: \qquad Hour: \qquadObtain one deck of playing cards.Group the cards by number (i.e. find all the 2's, all the jacks, etc.)Select four groups of cards to work with (i.e. Jack, King, Queen, Ace).Separate the cards by color
The red suites will represent chromosomes from the mother.
The black suites will represent chromosomes from the father.
The different suites (diamonds, hearts, etc.) represent genetic information passed on to the parents from the grandparents.

Please fill in all blanks before turning lab in. You may use external resources (textbook/worksheets) if needed.
Begin by selecting four red cards (all different) and four black cards (all different). Line them up in a parallel line. You should end up with four different numbers (four will be red and four will be black).

This is the \mathbf{G}_{1} phase of \qquad . Each card represents a \qquad chromosome. This \qquad (2 n) cell has four pair of chromosomes. Every cell has two copies of each chromosome, one from each parent.

Add the additional red and black cards to their corresponding pair to simulate chromosome replication. This is
\qquad of interphase I. Each group of two represents a \qquad chromatid. After an additional period of growth, division begins.

During \qquad I of meiosis I, the homologous chromosomes and their sister chromatids are paired together into a \qquad (group of four). Simulate this by combining all of the suites together. The chromosomes are packed very tightly together and \qquad may occur at this time.

In \qquad of meiosis the tetrads line up on the equator of the cell. The chromosomes are pulled apart in \qquad I. Sister chromatids are still attached. Simulate anaphase I by separating the cards into two piles. Do this randomly so that you have some red suites and some black suites in each pile. In meiosis, a cell membrane would form around these two groups of chromosomes, forming two haploid (1n) daughter cells.

Meiosis II (occurring in each of the new cells created above)
\qquad does NOT occur (no replication)
\qquad II: chromosomes are already paired with their duplicate.
\qquad II: Chromosomes line up on equator (center) of cell.
\qquad II: chromosomes are pulled apart. Simulate this by separating your cards into four piles. Note that although you have one of each kind of card, there is a random assortment color and suites. A cell membrane would appear around each of thesse cells during telophase/cytokinesis. Meiosis is now complete. Four \qquad (1n) cells have been created from one diploid cell. These cells are called \qquad ـ.

Post-lab questions

1. What is the benefit of starting with two copies of each chromosome in interphase I?
2. Why isn't there an interphase II in meiosis?
3. What would happen if there was an interphase II of meiosis?
4. How does crossover increase genetic diversity in organisms?
5. In the playing card model of meiosis, how could crossover be illustrated?
6. What do you notice about the composition of your final groups of cards in anaphase II of meiosis?
