pH and Color Change

Objective

- To be able to explain, on the molecular level, that $\boldsymbol{p H}$ is a measure of the concentration of the $\boldsymbol{H}_{\mathbf{3}} \mathbf{O}^{+}$in water and that adding an acid or a base to water affects the concentration of these ions.

Demonstration

- What does the color of the indicator solution tell you about the substance your teacher placed in each cup?
- That they are different because the indicator changed different colors.

Demonstration

Universal Indicator pH Color Chart

- What do the color of the liquids in the cup tell you about what is in each cup?

Activity Day One

Complete the Acid portions of the activity and fill in the data table on the activity sheet.

- 15 minutes

Explain it with Atoms and Molecules

- Proton transfer - Video

Explain it with Atoms and Molecules

- What is happening in the chemical equation above?

A proton is being transferred from one water molecule to another.

Explain it with Atoms and Molecules

- Why is one ion positive and the other negative?
- Since a proton has a positive charge, the molecule that gained the proton is a positively charged ion and the water molecule that lost the proton now is a negatively charged ion.

Explain it with Atoms and Molecules

Acids donate a proton - Video

- Bases accept a proton - Video

Activity Day Two

- Complete the Base portions of the activity and fill in the data table on the activity sheet.
- Complete the TAKE IT FURTHER portion of the lab.
- 20 minutes

Key Concepts

- Whether a solution is acidic or basic can be measured on the $\boldsymbol{p H}$ scale.
- When universal indicator is added to a solution, the color change can indicate the approximate $\mathbf{p H}$ of the solution.
- Acids cause universal indicator solution to change from green toward red.
- Bases cause universal indicator to change from green toward purple.

Key Concepts

- Water molecules $\left(\mathrm{H}_{2} \mathrm{O}\right)$ can interact with one another to form $\boldsymbol{H}_{\mathbf{3}} \boldsymbol{O}^{+}$ions and $\boldsymbol{O H}^{-}$ ions.
- At a pH of 7, there are equal numbers of $\boldsymbol{H}_{3} \boldsymbol{O}^{+}$ions and $\boldsymbol{O H}^{-}$ions in water, and this is called a neutral solution.

Key Concepts

- Acidic solutions have a pH below 7 on the pH scale.
- Basic solutions have a pH above 7 on the pH scale.

