| THE | E ROCK CYCLE | Name | | |---|--|---|---------------------| | | • | Per | page | | Object | tive: | | | | | | | | | | 1: WEATHERING | | | | Resear | veathering: | | | | T | wo types: | | | | | Physical: | | | | | Chemical: | | | | | | | | | | | | | | g;
pi
2. S
Discus :
1. A | sing the pencil sharpener, shave roup (4-6 crayons) into shavings iles on wax paper. You are "weasave for part 2 and answer discusion Questions (answer in come all weathered rock fragments hy not? | . Put the fragments by athering" rock material. ssion questions. plete sentences): in your pile the same si | color into separate | | _ | | | | | 2. W | /hat have you observed about ro | ck fragments in nature? | · | | 3. W | here do rock fragments tend to | collect? | | | 4. H | ow do rocks get smaller in size? | | | | 5. Ho | ow might ice be an agent of wea | thering? | | | Ho | ow about a tree root? | | | | 6. Do | pes mechanical weathering differ | from chemical weather | | ## **PART 2: EROSION AND DEPOSITION** | Researc | ch: | |----------|--| | Er | osion: | | Ma | aterial is transported by, or | | Se | ediment: | | De | eposition: | | St | ratification: | | <u></u> | | | Activity | | | | Put a sheet of aluminum foil (approx. 10 x 18) on your work area. In the center of the foil each student in your group should drop his or her "rock fragments", one at a time, piling them on top of each other. When each person has "deposited" his/her fragments, examine the pile carefully. | | 3. | Carefully fold the foil over the fragments and save for Part 3. | | | Sion Questions (answer in complete sentences): Explain the process of erosion: | | 2. | Explain how the action you just completed in this activity is like erosion: | | 2 | What are deposition and stratification? | | 3. | What are deposition and stratification? | | | | | | What are some conditions that might control deposition? | | 4. | Why are similar-sized rock fragments often found together? | | 5. | Where could you find rock debris fragments in loose layers? | | | | | PART 3: LITHIFICATION AND SEDIMENTARY ROCKS | |--| | Research: Lithification: Two parts: Compaction: cementation: | | sedimentary rocks: | | D 40 | | Activity: Put the foil package between two pieces of plywood. Have the lightest student briefly step onto the board. After removing the package from between the boards, carefully open the foil and examine the "sedimentary rock." Remove a small piece from the sedimentary rock. Put the small piece in a baggie. The remainder should be left in the foil package and saved for Part 4. | | Discussion Questions (answer in complete sentences): 1. Describe the thickness now compared to when it was initially deposited on the foil: 2. What happened to the spaces between the rock fragments? | | Explain the difference between compaction and cementation: | | | 4. Which does the activity done here represent, compaction or cementation? Page _____ ## PART 4: METAMORPHISM AND METAMORPHIC ROCKS | sear | | |--------|--| | iVI | etamorphic rocks: | | | | | - | | | | | | | | | tivity | | | | Place the foil package between two pieces of plywood | | | Have the tallest person stand atop the board, over the foil. | | 3. | Briefly place the foil package on a hot plate at a low temperature (your teacher will monitor this step) Bring the tongs with you to the hot plate to take the foil off when it's heated. | | 4. | Repeat steps 1-3 for an additional two times. | | | Place the foil package on your work station and allow it to cool. | | | While the package is cooling, work on the discussion questions. | | | Once the package is cool enough to handle, open and examine the newly formed "metamorphic rock". Take a small piece of it and place with your previously saved "sedimentary rock" in the baggie. | | 8. | Save the metamorphic rock in the foil for Part 5. | | | vion Questions (answer in complete conteness): | | | ion Questions (answer in complete sentences): Describe the color-layer thickness, comparing the metamorphic rock with the sedimentary rock: | | 2. | Describe the change in fragment shape: | | 3. | Why did this change happen? | | | | | PARI | SE IGNEOUS ROCKS | |--------------|---| | Resear
Ig | ch:
neous rocks: | | | | | _ | | | | | | Activity | | | | Bring your foil packet saved from part 4 to the aluminum tray on the hot plate. | | 2. | When your teacher returns your foil package, to back to your work station and let it cool. | | 3. | Work on your discussion questions while the packet is cooling. | | Discuss | sion Questions (answer in complete sentences): | | 1. | What happened to the "rock" fragments when they were heated on the hot plate? | | 2. | How does the igneous rock differ from the previously saved sedimentary and metamorphic rocks? | | | | | 3 | Which type of "rock" is easiest to break apart? | | | Which type of "rock" is the most difficult to break apart? | | ⊤. | Thior type or rook is the most difficult to break apart? | Page _____ The Rock Cycle | NAMI | E | DATE |
PER | PAGE | |------|---|--------------|---------|------| | ВЈ | | LAYERS OF TH | | | | | EARCH:
ers of the earth: | | | | | | continents:
under oceans:
mantle: | | | | | | Moho: | |
_ | | | | outer core: | | | | | | inner core: | 77.70 | | | 1 | pa | ge | | | | | |-----|----|----|-----|---|---|--| | - 1 | _ | 0- | 400 | _ | _ | | ACTIVITY: Earth is made of solids, liquids, and gases. Write the following words in correct spaces below: tree, rock, soil, air, water, ocean, mountain. | Solid | Liquid | Gas | | | |-------|--------|-----|--|--| | | 18 | | | | | | | | | | | 2. | How much hotter is the center of the Earth than your oven at home? | |----|--| | | Using an apple as a model of Earth, what would the skin be called? | | | What would the center be called? What would the fruit | | | be called? | | | It is 2800 miles (4505 km) across the United States. Which is farther the distance from | | | the surface to the center of the earth or the distance across the United States? | | 5 | By how much? and they Large areas of land that rise above the oceans are called: and they | | ٥. | are mostly made of | | 6. | are mostly made of The rock beneath the oceans is thicker/thinner (circle one) than the rock | | • | under the continents and is made of | | 7. | under the continents and is made of Both granite and basalt are igneous rocks. Granite has large crystals and basalt has very | | | small crystals. Explain where these two different rocks were formed and a possible | | | reason they ended up where they did in our world. |