Spinach Leaf Chromatography

Objective:

Name: Date:		
	Page:	
that undergo pl	otosynthesis?	

Question: How does chromatography show us the true colors of plants that undergo photosynthesis?

Hypothesis: What do you think will happen to the "plant liquids" when placed into rubbing alcohol?

Materials:

- Filter paper
- Petri dish
- Rubbing alcohol
- 1 coin
- Pencil (DO NOT USE A PEN!)
- Ruler
- Spinach and Red Cabbage Leaves
- M&M
- Marker

Procedure:

- 1. You will be working with the people at your table. Gather all supplies
- 2. Get a piece of chromatography paper. Cut the chromatography paper into 4 similar sections.
- 3. Using a pencil a ruler, draw a pencil line across each section of the chromatography paper 2 cm from the end of the chromatography paper.
- 4. On the pencil line of one of the sections, make a mark with a marker
- 5. On the pencil line of another section, mark the dye of an M&M on the line (wet the M&M)
- 6. Using a coin, try to extract "plant juice" from the spinach leaf and a cabbage leaf. Make sure to smear the liquid on the line of filter paper.
- 7. Let the "plant juice" dry for a couple of minutes on the filter paper.
- 8. Place the chromatography paper with "plant juice" marks into the petri dish containing the rubbing alcohol.
- 9. Wait five to ten minutes for this process to take place. Place the strips on a piece of paper towel
- 10. Measure how far each band traveled in centimeters.
- 11. Write the measurements and the colors of the bands in the chart
- 12. Identify the pigment each band could represent and fill it in the chart.

Pre-Lab Questions: Answer the following questions before starting the experiment.

- 1. Why is energy required for life?
- 2. How does energy enter the living world?
- 3. Why do plants have green leaves?
- 4. What is chlorophyll and how does it help with photosynthesis?

Data and Observations:

Dye Item	Distance Band Traveled (cm)	Band Color(s)	Identity		
Marker					
M&M					
Spinach					
Red Cabbage					
Draw what your chromatography paper looks like for each dye item					
Marker	M&M	Spinach	Red Cabbage		
	L				

Pigments: reflect this

- Chlorophyll a blue-green color
- *Chlorophyll b olive green*
- Xanthophyll yellow
- Carotene orange yellow
- Anthocyanin purple, blue, and/or red

Analysis and Discussion: Answer the following questions after the experiment.

- 1. Describe the data collected in the experiment.
- 2. Why is chlorophyll green?
- 3. During the fall, leaves change colors as the temperature decreases and the days get shorter. Why do leaves change color in the fall?
- 4. How could you predict the color a leaf will change during the fall?