Daily Routine

- Sit in your appropriate seat quietly
- Have all necessary materials out
- All back packs on the floor
- All cell phones on silent and away in backpacks
- All IPods off and headphones out of your ears
- No food or drink except for water
- All electronic devices away!!!

Bell Work

- Explain how background radiation (gamma waves, microwaves, and radiowaves) help support the Big Bang Theory?
- How do galaxies get their classification?

Earth Science Announcements Project Final Draft 11/12/2014

Big Bang and Galaxy Quiz Thursday November 13th

Big Bang, Galaxy, and Stars Test Thursday 20th

Galaxy Lab

- Groups of 4 to 5 at each of the lab stations
- Stay with your group, you may not move
 to other groups
- If I notice this, I will choose groups
- Complete sections 1-3, If you finish the first 3 work and complete the final

Stars and their Life Cycle

Due to the antique Radial statistic the sheater and the statistic the statistic terms and terms

Daily Routine

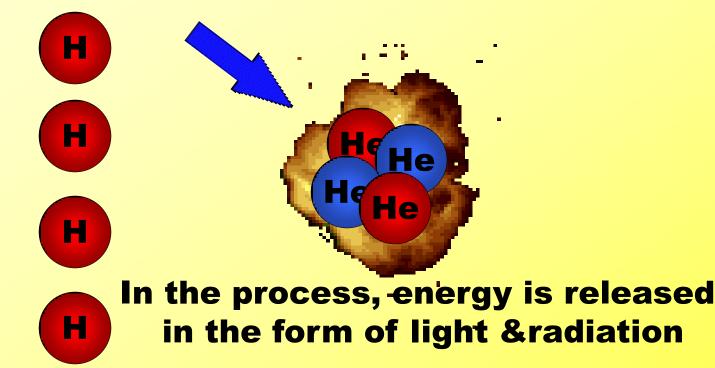
- Sit in your appropriate seat quietly
- Have all necessary materials out
- All back packs on the floor
- All cell phones on silent and away in backpacks
- All IPods off and headphones out of your ears
- No food or drink except for water
- All electronic devices away!!!

Bell Work

 Which of the electromagnetic waves are dangerous to us?

 Which waves do we use for evidence to help support the Big Bang Theory? Earth Science Announcements Project Final Draft 11/12/2014

Big Bang and Galaxy Quiz Friday November 14th


Big Bang, Galaxy, and Stars Test Thursday 20th

Stars and their Life Cycle

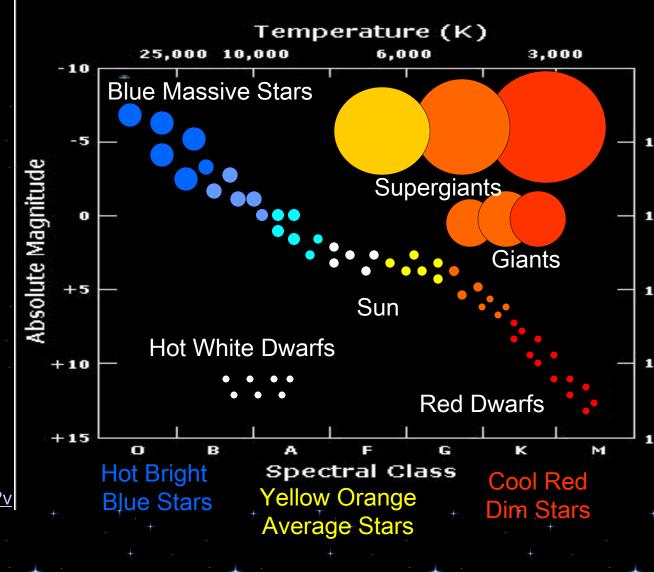
Where does light and these waves come from?

In the Core. Pressures and Temperatures are high enough for <u>Fusion</u> to take place

what happens

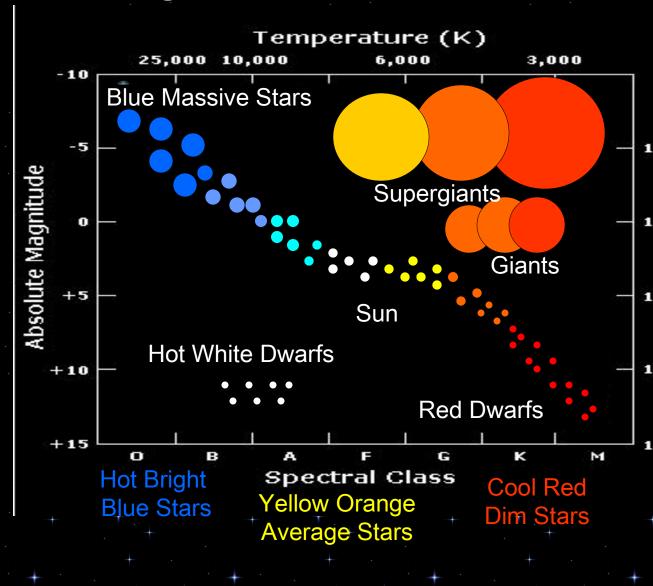
Fusion occurs when 4 hydrogen atoms (light element) combines to form 1 Helium atom (heavier element) Hydrogen, a lighter element is converted into a heavier element, *helium*

What are star characteristics?

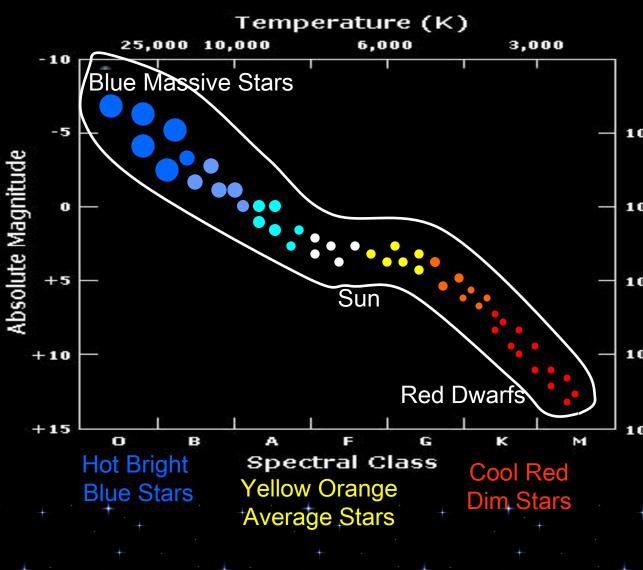

Yellow Stars like are Sun are average in brightness & temperature

Blue Stars areRed Stars arelarge hot and brightsmall cool and dim

How do we use the H-R Diagram?


In the early 1900's, Ejnar Hertzsprung and Henry Russell found a way to classify stars

They classified stars by their temperature and brightness <u>http://www.youtube.com/watch?v</u> =HEheh1BH34Q&feature=fvw


How do we use the H-R Diagram?

- Hertzsprung and Russell came up with a graph that shows the relationship between temperature and brightness
- Notice where the cool small red + dwarfs stars are located
- Notice where the massive hot blue+ dwarfs stars are located

What are Main Sequence Stars?

- Our sun is a yellow Main Sequence Star
- Main Sequence Stars that fit into a diagonal band that run from the upper left to the lower right corner
- Main Sequence Stars contain large, hot blue stars, as well as small cool red stars
- 90 % of all stars are Main Sequence

What determines Star + Size?+

A star will begin it's main sequence when hydrogen fusion begins

Gravity wants to crush the star So why doesn't it? Because the outward pressure Or force of energy from Fusion balances out the inward force of gravity This keeps the star in a + state of balance or equilibrium!

Daily Routine

- Sit in your appropriate seat quietly
- Have all necessary materials out
- All back packs on the floor
- All cell phones on silent and away in backpacks
- All IPods off and headphones out of your ears
- Hats off
- No food or drink except for water
- All electronic devices away!!!

Bell Work

How does a star maintain its shape?

Describe how fusion works.

Earth Science Announcements Project Final Draft 11/12/2014

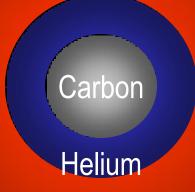
Big Bang and Galaxy Quiz Thursday November 13th

Big Bang, Galaxy, and Stars Test Thursday 20th

Stars and their Life Cycle

Hydrogen Temperature & Pressure Empty Full Affect Star Life

Large massive blue stars have **Short lives** Because they have higher pressures & temperatures in the Core, therefore they run through their Hydrogen fuel source faster


Hydrogen

Empty Full

Star like our sun have average lives Hydrogen

Empty Full Small Red dwarf stars have long live because of cooler temperatures in the core

In a massive blue stars core, hydrogen fuses together to form Helium for most of its +short Main sequence life

Eventually hydrogen starts to run out and helium starts to accumulate

As a result gravity wants to crush the star, pressures & temperatures increase, & the star begins fusing helium into carbon⁺

Over time the outward pressure or force of energy from fusion becomes stronger than the inward force of gravity & the star begins to swell & cool changing its color in the process

Oxygen

Carbon

Helium

Hydrogen

Temperatures continue to increase in the core, & the star begins fusing Carbon into Oxygen

> At this point the star is now a supergiant

But fusion doesn't stop Just yet!!!!!

Finally, as temperatures continue to increase the star will begin fusing oxygen into Iron

lron Oxygen Carbon Helium

Hydrogen

Near the end of it's life The blue massive star resembles an onion with layers of different elements

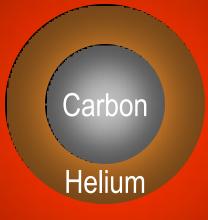
This process is called Nucleosynthesis—Where Lighter elements are created into heavier elements through Fusion in a star

In massive blue stars Elements up to the size of Iron-element 26 are created Through fusion

The Periodic Table of the Elements

/																		
Iron	1 H Hydrogen 1.00794												r					2 He Helium 4.003
Ovygen	3 Li Lithium 6.941	4 Be Beryllium 9.012182											5 B Boron 10.811	6 C Carbon 12.0107	7 N Nitrogen 14.00674	8 0 ^{Oxygen} 15.9994	9 F Fluorine 18.9984032	10 Ne _{Neon} 20.1797
Oxygen	11 Na Sodium	12 Mg Magnesium											13 Aluminum	14 Silicon	15 P Phosphorus	16 Sulfur	17 Cl Chlorine	18 Ar Argon
Carbon	22.989770 19 K	24.3050 20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	26.981538 31 Ga	28.0855 32 Ge	30.973761 33 As	32.066 34 Se	35.4527 35 Br	39.948 36 Kr
Helium	Potassium 39.0983 37	Calcium 40.078 38	Scandium 44.955910 39	Titanium 47.867 40	Vanadium 50.9415 41	Chromium 51.9961 42	Manganese 54.938049 43	Iron 55.845 44	^{Cobalt} 58.933200 45	Nickel 58.6934 46	Copper 63.546 47	Zinc 65.39 48	Gallium 69.723 49	Germanium 72.61 50	Arsenic 74.92160 51	Selenium 78.96 52	Bromine 79.904 53	Krypton 83.80 54
Hydrogen	Rb Rubidium 85.4678	Strontium 87.62	Y Yttrium 88.90585	Zr ^{Zirconium} 91.224	Nb Niobium 92.90638	Mo Molybdenum 95.94	Tc Technetium (98)	Ruthenium 101.07	Rh Rhodium 102.90550	Palladium 106.42	Ag _{Silver} 107.8682	Cd Cadmium 112.411	In Indium 114.818	Sn ^{Tin} 118.710	Sb Antimony 121,760	Te Tellurium 127.60	I 126.90447	Xe Xenon 131.29
	55 Cs _{Cesium}	56 Ba Barium	57 La Lanthanum	72 Hf	73 Ta Tantalum	74 W	75 Re	76 Os Osmium	77 Ir	78 Pt Platinum	79 Au Gold	80 Hg	81 Tl Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
-	132.90545	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)

At a certain temperature, Fusion can no longer occur and the outward energy stops, at this point gravity takes Black Hole Neutron Star Over and crushes the star


The star explodes into a super nova!!!

CarbonHeliumDepending upon the starsHydrogeninitial mass or size, It will end upas either a neutron star or Black hole

When the star explodes, it blasts all The elements into space, seeding the universe with Elements to make new stars, planets, people and buildings Supernovas are so hot & bright, They produce other elements heavier than iron

		The Periodic Table of the Elements																
	1 H Hydrogen																2 He Helium	
O	1.00794 3																4.003 10	
	Li Lithium 6.941	Beryllium Boron Carbon Nitrogen Oxygen Fluorine D															Ne Neon 20.1797	
С	11	$\frac{10.811}{12}$ 12 13 14															17	18
	Na Sođium 22.989770	Mg Magnesium 24.3050	Aluminum Silicon Phosphorus Sulfur Chlorine															Ar Argon 39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K Potassium 39.0983	Ca Calcium 40.078	Sc Scandium 44.955910	Ti ^{Titanium} 47.867	V Vanadium 50.9415	Cr Chromium 51.9961	Manganese 54.938049	Fe ^{Iron} 55.845	Co Cobalt 58.933200	Ni _{Nickel} 58.6934	Cu Copper 63.546	Zn ^{Zinc} 65.39	Gallium 69.723	Germanium 72.61	As Arsenic 74.92160	Se Selenium 78.96	Bromine 79.904	Krypton 83.80
ly	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
' y	Rb Rubidium 85.4678	Sr Strontium 87.62	Y Yttrium 88.90585	Zr ^{Zirconium} 91.224	Nb Niobium 92.90638	Mo Molybdenum 95.94	Tc Technetium (98)	Ru Ruthenium 101.07	Rh Rhodium 102.90550	Pd Palladium 106.42	Ag Silver 107.8682	Cd Cadmium 112.411	In Indium 114.818	Sn _{Tin} 118.710	Sb Antimony 121.760	Te Tellurium 127.60	I Iodine 126.90447	Xe Xenon 131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
+	Cs Cesium 132.90545	Ba Barium 137.327	Lanthanum 138.9055	Hafnium 178.49	Ta Tantalum 180.9479	W Tungsten 183.84	Re Rhenium 186.207	Osmium 190.23	Ir Iridium 192.217	Platinum 195.078	Au Gold 196.96655	Hg Mercury 200.59	Tl Thallium 204.3833	Pb Lead 207.2	Bi Bismuth 208.98038	Polonium (209)	At Astatine (210)	Rn Radon (222)

Our sun's core will fuse hydrogen into Helium for most of its 10 billion year old Main sequence life

Throughout this time Helium Will accumulate in its core As a result of gravity crushing the star, pressures & temperatures increase & the star begins fusing helium into carbon

Over time the outward pressure or force of energy from fusion becomes stronger than the inward force of gravity & the star begins to swell & cool changing its color in the process

Temperatures continue to increase in the core, & the star begins fusing Carbon into Oxygen

> At this point the star is now a Red Giant

Unlike a blue star, temperatures and pressure are not high enough To produce Iron through fusion Fusion stops at OXYGEN

Oxygen

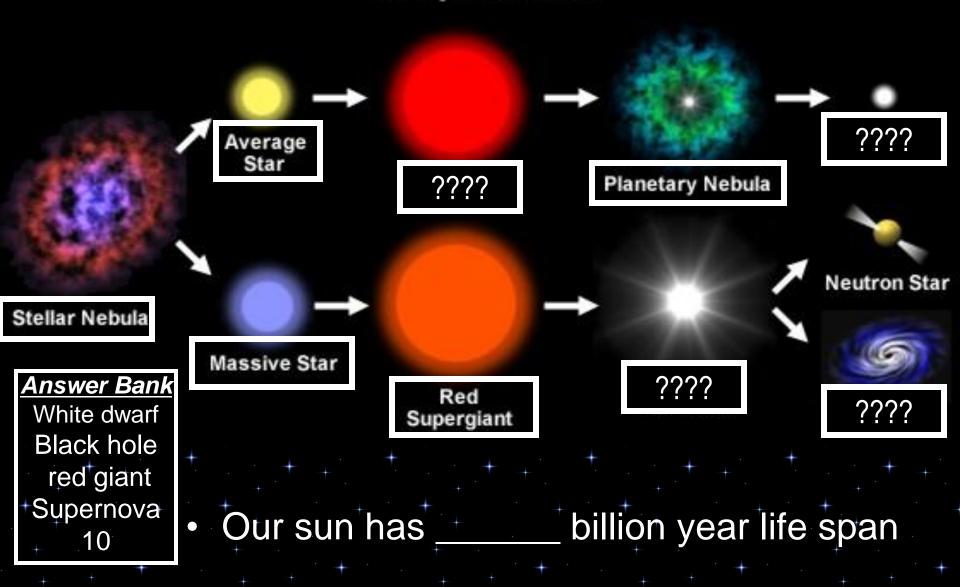
Carbon

Helium

Hydrogen

Instabilities in the balance Between Gravity & outward force or Pressure of fusion result in abrupt explosions that blow away the outer layers of the star

The result is a planetary nebula with a hot white dwarf star in the middle



Eventually the Gases are expelled Leaving behind A white dwarf star A white dwarf star is what remains. of an average star like our sun after Running out of fuel

> It's about the size of earth

Summarize:

Life Cycle of a Star

