# Time Zones & Ellipse Pathway

### **Objective:** Review Earth's time zones and an ellipse orbit around the sun with equinoxes & solstices.





∑GMT, Greenwich Mean Time, London

### Research **Prime Meridian:** starting point for time zones – longitude line which passes through Greenwich, England.



<u>12 Time Zones to the West</u> of the Prime Meridian: decrease in time

<u>12 Time Zones to the East</u> of the Prime Meridian: increase in time

## Research

International Dateline: longitude line through the Pacific Ocean. When you cross it moving east, you subtract a day. When you cross it moving west, you add a day.



#### **Daylight Saving Time:** Most states use this from March to **November. Set clocks** 1hr ahead of their time zone.



#### Leap Year: One orbit = 365 1/4 days. Once every four years a day is added to the calendar.

Earth revolves around the Sun in an orbit shaped like an ellipse <u>or oval.</u>





#### **Brightness of Mars as seen from the Earth: varies because distance varies.**



#### Earth is closest to the Sun during <u>winter</u> in the northern hemisphere.

Farthest from the Sun during <u>summer</u> in the northern hemisphere.



### Conclusions How do you explain that when Earth is closest to the Sun, it is winter in the Northern Hemisphere? Earth's north pole is tilted away from the Sun.

#### Conclusions The planets do not move at constant speed while moving in the elliptical orbits. A planet increases in speed as it gets closer to the Sun. What force causes this change in speed? Gravity

# Conclusions

Which part of Earth's revolution takes longest, from vernal equinox to autumnal equinox or from autumnal to vernal? vernal equinox to autumnal equinox

### Conclusions If you placed a phone call to Tokyo, Japan from Greenwich, England on a Friday at 4:00pm, what day is it in Japan? Saturday