Time Zones \&

Ellipse Pathway

Objective: Review Earth's time zones and an ellipse orbit around the sun with equinoxes \& solstices.

Research

-Rotation of the Earth:

 spins on its axis once every 24 hours.Time Zones of the Earth: The Earth is divided into 24 time zones.

Time Zones

GMT, Greenwich Mean Time, London

Research

Prime Meridian:

 starting point for time zones - longitude line which passes through Greenwich, England.
Research

12 Time Zones to the West of the Prime Meridian: decrease in time 12 Time Zones to the East of the Prime Meridian: increase in time

Research

International Dateline:

 longitude line through the Pacific Ocean. When you cross it moving east, you subtract a day. When you cross it moving west, you add a day.Research

Daylight Saving Time:

 Most states use this from March to November. Set clocks 1 hr ahead of their time zone.Leap Year: One orbit = 365 1/4 days. Once every four years a day is added to the calendar.

Earth revolves around the Sun in an orbit shaped like an ellipse or oval.

An Ellipse

Research

Brightness of Mars as

 seen from the Earth: varies because distance varies.
Research

Earth is closest to the Sun

 during winter in the northern hemisphere.Farthest from the Sun during summer in the northern hemisphere.

Ellipse Pathway

How do you explain that when Earth is closest to the Sun, it is winter in the Northern Hemisphere? Earth's north pole is tilted away from the Sun.

Conclusions

 The planets do not move at constant speed while moving in the elliptical orbits. A planet increases in speed as it gets closer to the Sun. What force causes this change in speed?Gravity

onclusions

Which part of Earth's revolution takes longest, from vernal equinox to autumnal equinox or from autumnal to vernal? vernal equinox to autumnal equinox

onclusions

If you placed a phone

 call to Tokyo, Japan from Greenwich, England on a Friday at 4:00pm, what day is it in Japan? Saturday